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2. OBJECTIVES

(unchanged) 

3. STATUS OF EFFORT

Research during the previous grant period can be roughly divided into four components.  

Initially, the spectroscopy and energetics of several radicals, clusters, and transition state species 

were investigated using anion slow-electron velocity-map imaging (SEVI).  This was followed 

by a major modification to the instrument, in which ion trapping and cryogenic cooling 

techniques were incorporated.  These modifications enabled the acquisition of well-resolved 

cryo-SEVI spectra for a series of transition metal oxide clusters comprising up to three transition 

metal atoms, work that provides the foundation for the primary proposed research direction in 

this proposal.  Finally, our very productive collaboration with Prof. Knut Asmis on the infrared 

spectroscopy of hydrated anions has continued.   Key results are summarized below. 

4. ACCOMPLISHMENTS/NEW FINDINGS

1) Spectroscopy of radicals, clusters, and transition states

SEVI is a powerful tool for investigating the spectroscopy and dynamics of radicals, clusters, and 

transition states.
1
  Over the years, in our group and elsewhere, it has been demonstrated that

photodetachment of mass-selected negative ions provides an elegant means for investigating 

these reactive and transient species.
2-4

  Even before ion trapping and cooling was incorporated

into the instrument, the additional resolution provided by SEVI compared to conventional 

photoelectron spectroscopy enabled us to uncover new spectroscopic and dynamical features 

associated with these species.  Specifically, we characterized the n-methylvinoxy,
5
 phenoxy and

thiophenoxy,
6
 and propadienylidene

7
 radicals through SEVI spectroscopy of the corresponding

anions.  In addition, we measured SEVI spectra of the open-shell complexes RgS¯,
8
 and

characterized the transition state region of the F + H2 and F + CH4 reactions via SEVI of the 

appropriate precursor anions.
9

The SEVI spectrum of the n-methylvinoxide anion probed the effects of multiple isomers and 

vibronic coupling between close-lying states of the n-methylvinoxy radical.
5
  Transitions

between the X
~ 1

A' anion ground electronic state and the radical X
~ 2

A" and A
~ 2

A' states were 

observed. The major features in the spectra were attributed to transitions involving the lower 

energy cis conformers of the anion and neutral, while the higher energy trans conformers 

contribute only a single small peak. Franck-Condon simulations of the X
~ 2

A" ← X
~ 1

A' and 

A
~ 2

A' ← X
~ 1

A' transitions were performed to assign vibrational structure in the spectrum, and to 

aid in identifying peaks in the cis-n-methylvinoxy X
~ 2

A" band that occur only through vibronic 

coupling. Our SEVI spectra of the phenoxide and thiophenoxide anions revealed vibrationally-

resolved transitions to the X
2
B1 state of each radical species.

6
  Photodetachment to the A

2
B2

excited state of the thiophenoxy radical, a fully allowed transition in photoelectron spectroscopy, 

was also well-resolved, and yielded the first accurate term energy for this state.    
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Clusters comprising open-shell atoms or molecules pose a particular challenge to both theory and 

experiment because multiple close-lying electronic states associated with the open-shell species 

are typically coupled and split within the cluster.   Photodetachment of the corresponding anion 

has also proved to be a powerful spectroscopic probe of both the anionic and neutral electronic 

and vibrational levels of these systems.
10, 11

  In this vein, we have measured SEVI spectra of 

RgS¯ (Rg = Ne, Ar, Kr) anions.
8
  The NeSˉ results represent the first observation and 

characterization of an anionic Ne complex.  Numerous well-resolved transitions were observed 

for each species, showing an increasing perturbation of the fine-structure associated with Sˉ 

photodetachment with increasing mass of the Rg atom.  New interaction potentials for the RgS 

anion and neutral complexes were calculated that allowed us to simulate the SEVI spectra with 

high accuracy and to assign its resolved features.   

The F + H2 → FH + H reaction and its various isotopologues have been extensively studied as 

the quintessential bimolecular reaction. The F + CH4 → FH + CH3 reaction has evolved into a 

benchmark polyatomic reaction and provides insight into how additional degrees of vibrational 

freedom affect chemical reaction dynamics. Negative ion photoelectron spectroscopy  

complements scattering experiments on these reactions by directly accessing the transition state 

region via photodetachment of an anion with appropriate geometry,
12

 in this case FH2¯ and 

F¯(CH4) anions.  We have measured SEVI spectra of both anions to obtain significantly 

improved results for both systems compared to previously published work.
13, 14

  A small peak in 

the para-FH2¯ spectrum was identified, matching simulations of a product resonance associated 

with HF(ν'=3).  SEVI spectra of the 
2
P3/2 bands of FCH4¯ and FCD4¯ show extended fine 

structure from transitions to the entrance valley van der Waals region and the reactant side of the 

F + CH4 transition state region.  Much of this structure is attributed to bending or hindered 

rotation of the methane moiety and may be a spectroscopic signature of reactive resonances.  
 

2)  Modifications of the SEVI instrument 

For atomic systems, the energy resolution of SEVI  is about 2.5 cm
-1

, a considerable 

improvement over anion PES in which the resolution is generally 100 cm
-1

 at best.  However, 

peak widths in the SEVI spectra of molecular anions and clusters have typically been 20-25 

cm
-1

,
15

 considerably broader than the spectra of atomic systems. In the original version of the 

SEVI experiment,
16

 ions were produced by expanding an appropriate gas mixture into vacuum 

with a pulsed solenoid valve. Anions were created from this expansion by using either an electric 

discharge or by electron attachment from a pulsed ring anode.  In this production scheme, ions 

are cooled in the free jet expansion after the source, but the efficacy of this cooling, particularly 

for vibrational degrees of freedom, varies considerably between systems.  Incomplete vibrational 

and rotational cooling results in spectral congestion that limits the effective resolution of SEVI 

through a combination of unresolved rotational contours, hot bands originating from excited 

anion vibrational levels, and unresolved sequence bands. 
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To eliminate this problem, the SEVI 

instrument has been extensively 

modified,
17

 and now includes radio-

frequency (rf) ion guides and an ion trap 

with buffer gas cooling so that the anions 

can be cooled to the greatest extent 

possible prior to spectroscopic 

investigation.  The new version of the 

apparatus is shown in Fig. 1.  Negative 

ions are generated in a pulsed source via 

ionization or laser ablation.  They pass 

through an rf ion guide and are mass-

selected in a quadrupole mass 

spectrometer.  They are then injected 

into an rf-octupole trap, and cooled by 

collisions with a low pressure buffer gas 

in contact with a cryostat held at 5 K.  Best results were found for a mixture of 80% He/20% H2, 

which gave significantly better vibrational cooling than pure He at the same pressure and 

temperature.
18

  The anions are extracted from the trap into a time-of-flight mass spectrometer 

and photodetached.  The resulting photoelectrons are energy-analyzed using SEVI. 

As a first test of the new instrument, we 

measured the cryo-SEVI spectrum of the 

C5¯ anion and compared it to the SEVI 

spectrum of anions produced in free jet 

expansion with no additional cooling.
17, 

19
  The results are shown in Fig. 2.  The 

two peaks arise from the two spin-orbit 

levels of C5¯, which has a 
2
 ground 

state, and are split by only 25 cm
-1

.  

Clearly, the population of the spin-orbit 

excited state (peak 2) is much lower in 

the spectrum of the cooled anions; from 

the relative peak heights, we extracted a 

temperature of 10 K for those anions, as 

opposed to 60 K for anions with no cryo-

cooling.  In addition, the peaks are 

substantially narrower for the cooled anions:  4-6 cm
-1

 compared to 20-25 cm
-1

.   Hence, trapping 

and cooling results in an internal temperature only slightly warmer than the cryostat temperature, 

and sub-meV peak widths as a result of reduced spectral congestion.  We have thus achieved our 

Figure 1.  Schematic of cryo-SEVI instrument 

Figure 2.  SEVI spectra of C5‾ with (black) and without 
(red) cryo-cooling 
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goal of obtaining spectral resolution comparable to that seen for atomic systems, enabling high 

resolution SEVI spectra of complex clusters and other species as outlined in the next section.   

3)  A key thrust of our research effort is to unravel the photoelectron spectra of transition metal 

oxide clusters, since these are tractable model systems for reactive sites in catalysis.  These 

species present significant spectroscopic challenges, including multiple low-lying structural 

isomers, a dense manifold of electronic states, and very low vibrational frequencies.  As a result, 

photoelectron spectra of transition metal oxide cluster anions generally show little or no 

vibrational structure, especially if there are two or more transition metal atoms.   With this in 

mind, we have measured cryo-SEVI spectra of a series of transition metal oxide cluster anions, 

starting with the triatomic dioxide species TiO2¯, ZrO2¯, HfO2¯, and VO2¯, and followed by 

work on the more complex clusters Ti2O4¯, Zr2O4¯, Fe3O¯, and Co3O¯. 

The group 4 transition metal (Ti, Zr, Hf) oxides are an important class of materials, with 

extensive applications as catalysts, catalyst supports, photocatalysts, dielectric materials, and 

corrosion resistant materials.  Vanadium oxide catalysts play a key role in the oxidative 

dehydrogenation of propane and the oxidation of methanol, two processes of considerable 

industrial importance.  Our first set of experiments was performed on triatomic group 4 transition 

metal di-oxide clusters.
20

  The triatomic MO2‾ anions are closed-shell species with 
1
A1 electronic 

states, while the neutrals have 
2
A1 ground states that are well separated from higher-lying states.  

Hence, the electronic spectroscopy of these clusters is relatively simple, making them good test 

systems for the new instrument.  The SEVI spectra of the three anions, shown in Fig. 3, exhibit 

fully-resolved vibrational progressions in all three vibrational modes (including the 3 mode, 

shown in the insets, which presumably is seen through vibronic coupling), yielding accurate 

vibrational frequencies and electron affinities.   

The electronic structure of VO2 and VO2¯ is considerably more complicated.
21-23

 The anion has 

two nearly degenerate triplet states, the 
3
A1 and 

3
B1 states, while neutral VO2 has a 

2
A1 ground 

state and low-lying 
2
B1 and 

2
A1 excited states.  As shown in Fig. 4,

24
 we observe fully 

vibrationally-resolved transitions from the anion ground state to the first three electronic states of 

neutral VO2.  The anion ground state is identified as the 
3
B1 state with the aid of Franck-Condon 

simulations and electronic structure calculations.  The improved resolution and ion cooling 

Figure 3.  SEVI spectra of TiO2‾, ZrO2‾, and HfO2‾.  Overview spectra are shown in blue, and high resolution 
composite spectra are shown in black. 
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allows us to obtain accurate vibrational frequencies, electron affinities, and term energies.  We 

also reassign bands observed in the previously reported PE spectrum of VO2‾ 
25

 to be consistent 

with our interpretation.  

The Ti2O4 and Zr2O4 clusters exhibit an additional level of 

complexity, since electronic structure calculations find three 

closely-lying structural isomers for the anionic and neutral 

clusters,
26

 as shown in Fig 5.  The energy ordering depends on 

the charge state and predict differing ground state structures 

depending on the theoretical method used.  While there is 

experimental evidence that both neutral clusters have C2h 

ground states,
27

 the energy ordering for the anions is 

considerably less settled.   

SEVI spectra of Ti2O4¯ and Zr2O4¯ are 

shown in Figs. 6 and 7.
28

  The spectra 

show extensive vibrational structure and, 

more importantly, are totally different.  

The Ti2O4¯ spectrum shows two extended 

bands, a strong band B with a 

characteristic peak spacing of 95 cm
-1

 and 

a bi-modal intensity distribution, and a 

weaker band A with a peak spacing of 180 

cm
-1

.  The Zr2O4¯ spectrum shows a 

strong vibrational origin (peak A) and 

irregular peaks characteristic of multiple 

active vibrational modes.  There is also a 

very peak progression (see inset) with a 

peak spacing of 95 cm
-1

.  By comparing the experimental results with Franck-Condon 

simulations and calculated vibrational frequencies, we assign the dominant feature (band B) in 

Figure 4.  SEVI spectra of VO2‾, showing transitions to the X, A, and B states of VO2. 

Figure 5  Structural isomers of Ti2O4, 
Zr2O4, and their anions.   

Figure 6.  SEVI spectrum of Ti2O4‾.  Bands B and A originate from 
anion C2v and C2h isomers, respectively. 
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the Ti2O4
−
 PE spectra to 

photodetachment from the C2v 

isomer, and band A to the higher-

lying (and hence less populated) 

C2h isomer.  The lowest-energy 

isomer of Zr2O4
−
 is the C3v 

isomer, but a small amount of the 

C2v isomer accounts for the weak 

band in the inset.   

Most recently, we have obtained high-resolution SEVI 

spectra of the transition metal suboxide clusters Fe3O
−
 

and Co3O
−

.  As shown in Fig. 8,
29

 the spectra are very 

well-resolved.  Several vibrational frequencies of the 

neutral ground state Fe3O and Co3O clusters are assigned 

for the first time, and a low-lying excited state of Fe3O is 

observed.  The experimental results are compared with 

density functional electronic structure calculations and 

Franck-Condon spectral simulations, enabling 

identification of the structural isomer and electronic 

states.  As has been found in photoelectron spectra of 

other trimetal oxo species, Fe3O
0/−

 and Co3O
0/−

 are 

assigned to a μ2-oxo isomer with planar C2v symmetry.  

We identify the ground states of Fe3O¯ and Co3O¯ as 
12

A1 

and 
9
B2 states, respectively.  From these states we observe photodetachment to the 

11
B2 and 

13
A1 

ground and excited states of Fe3O, as well as the 
8
A1 ground state of Co3O.  

Cryo-SEVI has also been applied to the study of free radicals and bimolecular transition states.  

We obtained highly-resolved spectra of the polycyclic aromatic hydrocarbon radicals indenyl 

(C9H7) and fluorenyl (C13H9) via SEVI of the corresponding anions, both of which are 

aromatic.
30

  Detailed analysis showed that the fluorenyl spectrum could be interpreted in terms of 

normal Franck-Condon considerations, but that the vibrational structure in the indenyl spectrum 

was dominated by nominally forbidden transitions that were allowed only through vibronic 

coupling between the radical ground state and a low-lying excited state.   In our study of the 

CH2CN radical via  SEVI of CH2CN¯, we demonstrated how one could vary the ion trap 

temperature to adjust vibrational state populations in the anion, and could thus precisely control 

and understand which features in the spectrum originated from the ground and vibrationally 

excited anion states.
31

    

The cyro-SEVI spectrum of F¯(CH4) ions reveals dynamics in the entrance channel and 

transition state region of the benchmark polyatomic reaction F + CH4HF + CH3.
32

  The 

experimental spectra show extended, low frequency progressions with characteristic spacings of 

Figure 7.  SEVI spectrum of Zr2O4‾.  Main and weak bands (inset) are 
from C3v and C2v isomers, respectively. 

Figure 8.  SEVI spectrum of Fe3O‾. 
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15-20 cm
-1

.  Comparison with quantum scattering calculations shows that these features result 

from complex vibrational motion on the neutral reactive surface involving both FCH4 stretching 

and rotational motion of the F atom relative to the CH4.  Recent unpublished cryo-SEVI 

experiments on FH2¯ and FD2‾ show well-resolved peaks that, by comparison to quantum 

scattering calculations, clearly correspond to product resonances, marking the first spectroscopic 

identification of the resonances in the F + H2  and F + D2 reactions.   

4)  Infrared multiple photon dissociation of hydrated anions 

In our continued collaboration with Prof. Knut Asmis (Leipzig), we have measured infrared 

spectra of a series of hydrated anions using the technique of infrared multiple photon 

dissociation, in which cryogenically cooled, mass-selected anions are dissociated by the 

absorption of multiple photons from a tunable infrared free electron laser.
33

  This work is 

motivated by the importance of clusters comprising bisulfate (HSO4¯) and nitrate (NO3¯) anions, 

their conjugate acids, and water, in atmospheric chemistry and in aerosol formation.  This 

program initially focused on X¯(H2O)n clusters in order to probe how solvation shells form 

around anions of fundamental interest and to understand how solvation affects the structure and 

spectroscopy of the anion.  We have recently expanded this program to cover more complex 

clusters involving anions, their conjugate acids, and water molecules, such as 

NO3¯(HNO3)m(H2O)n and HSO4¯(H2SO4)m(H2O)n.  These studies show how the very strong 

hydrogen-bonding in a binary complex of an anion and its conjugate acid is affected by solvation 

and hydration. 

Our experiments on HSO4¯(H2O)n clusters (n=1-16) showed extensive vibrational structure 

assigned to stretching and bending modes of the bisulfate core, as well as to water bending and 

librational modes.
34

  Comparison to simulated spectra from electronic structure calculations 

indicates that the acidic proton in bisulfate is involved in hydrogen-bonding starting at n=1, and 

the water-water hydrogen bonds are present for n2.  We have also begun investigating hydrated 

H2PO4¯ anions, starting with the binary H2PO4¯(H2O) complex.
35

  It was not possible to simulate 

this spectrum within the harmonic approximation, and instead required ab initio molecular 

dynamics simulations to account for the apparent large amplitude motion of the water molecule.  

We are currently investigating whether simulations of these types will provide a better 

framework for understanding the infrared spectra of this genre of clusters.   

In our work on anion/acid clusters, we first explored mixed clusters of NO3¯ and HSO4¯ with 

nitric and sulfuric acid molecules.  We found that bisulfate was the main charge carrier for 

HSO4
¯
H2SO4HNO3, but not for NO3¯ H2SO4HNO3.

36
  The spectrum of the mixed dimer anion 

showed evidence for two isomers, HSO4¯HNO3 and NO3¯H2SO4.  In HSO4¯(H2SO4)m(H2O)n 

clusters,
37

 we observed the triply-hydrogen bonded HSO4¯(H2SO4) motif in clusters with no 

water molecules, while this motif was disrupted for hydrated clusters with m>1.  In 

NO3¯(HNO3)m(H2O)n clusters, we found evidence for an equally shared proton for NO3¯HNO3 

with a characteristic absorption at 877 cm
-1

.
38

  This arrangement is disrupted by the addition of at 
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least one more HNO3 molecule or two more water molecules, leading to localization of the 

proton near one of the nitrate cores.   
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